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AbslrseL We propose a lheory of the eleelmn-phonon drag effect in an ideally pure 
w system under a quantizing magnetic field. Iko Situations are considered, i.e. when 
phonons are (i) lhose of a diffusive hear R o w  and (ii) those of a focused ballistic beam. 
In the first case, we calculate the drag current for different asymplotical temperature 
inlervals and give its relation to lhe phonon-scattering-induced conductivity. For the 
2D gas illuminated by a hot beam of phonons, we analyse the manifestation of their 
qclolmn absorption both in the drag and in the beam-activaled conductivity. 

1. Introduction 

Over the past few years new methods have been used to study ZD electronic 
systems in quantizing magnetic fields in addition to the conventional electric transport 
measurements. For example, acoustic phonons have been applied as a tool to test 
the local properties of ZD particles. Generally speaking, there are two ways of 
using the phonons as a tool for 2D electron studies. One of them is similar to 
that of light absorption. It consists in the registration of eventS of acoustic wave 
attenuation or scattering by electrons in fine measuremens of heat [l] or surface 
acoustic wave transport [2,3]. The other is based on the fact [4] that there is a 
relatively high momentum transfer from the non-equilibrium phonons to the electrons 
producing a current in the ZD system itself, which in fact is easier to register in 
the electric measurements [5-71. In what follows we analyse such a current in the 
degenerate ZD electron gas dragged by a phonon flow in the bulk semiconductor in a 
quantizing magnetic field H. The present paper deals with the model of ideally pure 
heterostmctures. We avoid any impurity scattering effect, which means that we do not 
lay claim to an exact description of the localized regime under quantum Hall effect 
conditions, but rather hope that the following results will describe the characteristic 
features of the dependence on temperature and H of the effect which result from 
peculiarities of the 2D electron interaction with phonons in high magnetic fields. 

Our idealized system thus includes ZD electrons, phonons and their interaction, the 
latter being of both deformation and polarization origin in polar materials like GaAs. 
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The electrons are free and fill some of the lowest Landau levels (we consider the gas 
to be degenerate at sufficiently low temperatures). The phonons come to the electron 
gas from the bulk, their flow being controlled, for example, by the bulk impurity and 
surface scattering or by umklapp processes. This assumption allows us to look upon 
the drag as a response to the phonon flow created by some external source with the 
phonon distribution function determined by the way the flow is excited. 'lb make 
the analysis more specific, the calculations below will concern the case of a diffusive 
thermal flow (51 due to a weak lattice temperature gradient in the bulk sample and 
to the case of a high-temperature beam of focused ballistic phonons created by a hot 
spot located far from the tested part of the hetemstructure [6]. 

The electron-phonon interaction, in its turn, involves two kinds of processes. 
One of them is related to the elastic phonon scattering by an electron quantized at 
the Landau level, while the energy conservation law evidently forbids absorption of 
low-energy phonons in the intra-Landau-level transition, which makes the situation 
under consideration very different from the case of 2D metals in zero magnetic 
field [8,9]. In contrast to pure metals, the drag in a quantized electron gas at 
low temperatures only appears in the second order of the perturbation theory in 
the electron-phonon coupling. This makes it problematic to apply directly metallic 
formulae [lo] to the case of quantizing magnetic fields in ideally pure structures and 
in what follows we develop the formalism for the drag theory relevant to this case. 
The first section of our communication thus deals with a formal perturbation theory 
treatment of the phononscattering-dragged current in a magnetically quantized 2D 
electron gas. Sections 3 and partially 6 are devoted to the application of such a 
perturbation theory to the thermopower drag effect and the drag of electrons by 
focused beams of ballistic phonons, respectively. In section 4 we derive a relation 
between the drag and conductivity induced by the phonon scattering. In section 5 
we use it when accounting for the effect of dynamical screening of the electron- 
phonon interaction and then describe the resulting temperature behaviour of the 
drag thermopwer under a quantizing magnetic field, with specific applications to 
GaAs-AIGaAs hetorostructures. 

Concerning the case of ballistic phonon beams, it should be noted that the beam 
temperature can exceed considerably that of ZD electrons. Thus, in Ssction 6 we 
also study the manifestation (both in the drag effect and phonon-beam-activated 
conductivity) of another kind of process: absorption of high-energy phonons which 
are in resonance with the inter-Landau-level transition. 

V I  Fal'ko and S V Iordanskii 

2. Electron-phonon interaction and drag current a t  degenerate Landau levels 

The problem one encounters in determining the electron current subjected to a 
quantizing magnetic field arises from the currentless nature of Landau states which 
is due to the infinite degeneracy of the discrete electronic spectrum. Indeed, the 
current carried by any state +, is exactly zero in the absence of an external electric 
field, i a ev = e &lap = 0. ?b overcome this difficulty, we use the same trick as 
is used to describe the transport in the tunnelling Hamiltonian approach [ll], when 
the eigenstates of a non-perturbed Hamiltonian are currentless (localized in one of 
the electrodes). We define the current f as the change in number of particles IQ in 
a half-space per unit time: 
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The Hamiltonian in equation (I), 

A =  z' ,af ; , ,a , , ,+  x b q b : b q + p  (2) 

contains three terms: that of only electrons, of free phonons and of their interaction 

In defining the operator for the number of particles in a half-space, we have 
some freedom due to the localization of states by a magnetic field. 'Ib simplify 
our consideration, we choose the Landau gauge and determine I$ as a number of 
electrom occupying the states centred in a half-space, for example y < 0 [12] (i.e. 
we define the current component along the y-axis), 

= z w ( P ) a : , , a , , , .  (4) 

Here and in what follows n is the Landau level number, p is the electron momentum 
along the z-axis (the Landau gauge is used), q is the phonon momentum and w ( p )  
is the step function (U, = 0, p > 0 and w = 1 , p  < 0). This I$ commutes with the 
electronic part of the Hamiltonian, and the current operator thus appears via the 
electrobphonon interaction term in equation (2) 

f = -(i/+ a~,,a,~,,~IVn,.,~p~(n)b, + ~ , , , , , , , ( - q ) b : I ( w ( ~ )  - w(P') ) .  (5)  

With the current operator in hand, the calculation of the drag can be performed 
according to the rules of Keldysh's diagrammatic technique [13]. The diagrams to he 
accounted for in the low-temperature limit are schematically shown in figure 1. Solid 
lines correspond to the electron advanced and retarded Green functions (Gr+(e) = 
[ E  - hw, k i6I-l for the degenerate Landau level) and Keldysh's function GK which 
is related to the electronic occupation numbers. Dashed lines mean the same for 
phonons (for example, see [16], problem related to $92). The diagrams contain 
vertices of two types: the current (I) and the interaction (V) vertices described by 
equations (5) and (3) respectively. According to the energy conservation rules in 
the vertices, intermediate electron states that follow the absorption (or emission) of 
phonons are virtual, which corresponds to G'!' = [ ( T I  - n ' ) b w ,  f h 4 q ) I - l .  At 
this point we find that if only soft phonons exist in the system at low temperature, 
b ( q )  < T a hw,, the inter-Landau-level virtual transitions can be neglected and the 
Landau level number should be the same along any diagram in figure 1. Keldysh's 
functions of electrons, GK = 2rri(2u, - l), are, therefore, determined by partial 
filling factors 0 < vn < 1, of the occupied Landau levels. 

All the diagrams shown in figure 1 correspond to the second-order perturbation 
theory in the electron-phonon interaction and describe the phonon scattering process 
only allowed by the energy conservation rules in systems with an infinitely degenerate 
discrete spectrum. As usual in secondader  perturbation theory [14], the amplitude 
of the two-phonon process is composed of the terms differing by the permutation of 
phonon absorption and emission vertices. The observables should, therefore, account 
for both the squares of each of them (diagrams without crossing of phonon lines) 
and their interference, which explains the presence of the cross diagram in figure 1. 
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k ‘ h r  

F@re 1. Main perturbation theory diagrams contributing F@re 1. lkmprature dependence of the 
10 the phonon-scattering-induced current. We use drag cumnt near the saturation regime 
Keldysh’s version of the diagrammatic technique, i.e. which shows that the drag current is alrcady 
solid and dashed lines correspond to advanced, retarded saturated (idr.g a j,,)at TAH/&s  a =-I. 
and Keldysh‘s Green functions [13,16] of electrons and In these calculations we used the lowest 
phonons, mpectiveiy. Landau level n = 0. 

Changing the order of absorption and emission vertices, one changes the sign of the 
Green function of a virtual state hence, diagrams of different topological types have 
different signs. We thus write an analytical expression for the drag current density 
jdm8 (as follows from equation (4)-(9, its projection onto the y-axis) in the form 

x I~ ,~(ql )Vn,n(qz)Iz(q ,r  - q Z z ) [ f ( q l )  - f(q2)I 

x 11 - cos(GrL(q1 x %))I (6) 
where the last multiplier just reflects some partial cancellation between them. In this 
expression f(q) is the phonon distribution function and V , ( q )  the electron-phonon 
interaction matrix element dependent on the electron-phonon coupling mechanism in 
the material. In what follows we restrict ourselves to the case of cubic polar crystals 
(for example, GaAs) with the deformation potential produced only by longitudinal 
phonons. So long as we also ignore the difference between the longitudinal and the 
transverse sound velocity (s), the matrix element can be written as 

lv,,,(q)12 = [(qzzz + 0’) h / ( 2 p o s q ~ , ~ ,  L = ) ]  e-(qllAH)*/z [ L ~ ( ~ ; x ~ / ~ ) I ’  . 
In this equation we follow the notation in [15]: Z is the deformation potential 
interaction constant, p the polarization interaction constant summed over transverse 
and longitudinal phonon modes and pu = Mu/=: the mass per unit crystalline Cell. 
Further, q ,  is the phonon momentum projection to the plane of ZD gas and A, the 
magnetic length. The construction containing the normalized generalized Laguerre 
polynomials L: results from the specific form of the Landau wave functions; as well 
as considering electrons as purely two-dimensional particles, we neglect extension of 
their wave functions across the ZD layer (in the direction l z ) .  
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3. Current dragged by diffusive phonon Row 

Calculating the current defined by equation (6) under specific conditions one needs 
a specific form of the phonon distribution function. In the case of diffusive heat flow 
it is formed by the impurity and boundaly scattering or umklapp processes and can 
be written as [16] 

f = f ~ + 6 f  a f ( q ) = - q . v ( a f T ( w ) l a w )  

In this equation V a V T  is the phonon gas velocity with respect to  the lattice and 
fT is the equilibrium Bose distribution function. At low temperatures the surface 
scattering dominates and, therefore [16], V a T-IVT. After relevant substitutions 
the drag current in equation (6) takes the form 

(Jo is the Bessel function). An example of its temperature dependence for the 
n = 0 Landau level is shown in figure 2, where two different temperature regimes of 
drag current behaviour are quite distinguishable, depending on the relation between 
magnetic length and characteristic wavelength, hs/T, of a thermal phonon. 

At fhe lowest temperawes, T < hs/X,, when the phonon wavelength is definitely 
longer than the magnetic length, we are able to replace all the functions in the integral 
of equation (7) (except f T ( q ) )  by their approximation at q + 0, which simplifies the 
integration and gives 

The factor 

F(T/T,)= 1+ !&(T/T,)Z+(T/T.)4 

accounts for the interplay between the deformation and polarization contributions to 
the electron-phonon interaction. At T < T. the interaction is mostly polar until the 
crossover temperature 

T, = ( g )  114 hsep /n2 .  

In GaAs this temperature is about 1 K. At higher temperatures it is the deformation 
potential interaction that is mainly responsible for the electron-phonon coupling, 
which enhances the temperature dependence of the current (idrig o( for T > T, 
competes with idrag a TS for T < T.). 
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Another type of asymptotic behaviour of jdn8 can be expected from the high- 
temperature range, T > hs,/E/A, (but still T < tW,, and the electron gas is 
thus degenerate), where the high-energy tail of the phonon distribution function is 
insufficient from the point of view of interaction with quantized electrons. In this 
case the current is formed by the phonons with wave vectors of the order of ,hi/X,; 
hence the dependence of the drag current on the temperature of phonon flow is 
saturated for any kind of coupling mechanism, 

The factor 

accounts for the interplay of the polar and the deformation potential interaction: at 
A, < 2 . 5 2 m / e p  the deformation potential interaction is dominant; in GaAs- 
AlGaAs heterostructures the deformation potential coupling works if the electronic 
density exceeds 3 x 10"cm-2. As mentioned above, V - V T / T  and for some of the 
lowest Landau levels 0 - 1 and 7 - 0.5. The current in equation (9) slowly increases 
with the field and undergoes Shubnikovde Haas oscillations. Formally, asymptotical 
behaviour in equation (9) can be expected at T >> hs/X, ,  but the comparison of 
the latter result with the previous one in equation (8) and the numerical calculations 
of jdmg for the lowest Landau level (n = 0) presented in figure 2 show that such a 
crossover happens, in fact, at lower temperatures than hs / r rAH.  

4. Relation between drag and phonon-scattering-induced conductivity 

In their temperature dependence, the drag coefficients in equations (8)-(9) resemble 
the phonon-scattering-induced mobility of a quantized electron gas derived in (171 
for the electron gas in Si MOSFETS and electrons on the liquid helium surface. This 
similarity can be followed throughout the above calculations, if we take into account 
that the external electric field E causes a spatial variation of the electron single- 
particle energy, and the frequencies of the incident and scattered phonons thus differ 
by the value of eEA& A p / f i .  One can, therefore, arrive at the expression for the 
current driven by the external electric field E, just by replacing [f(q) - f(q')] with 
eEX& Ap6'fT(w)/6'hw (or phonon flowvelocity V by drift velocity e [ l ,  x E ] A & / h ) :  

This way of determining the diagonal part of the conductivity gives an idea of 
some general phenomenological relation between the drag and the phonon-scattering- 
induced conductivity. Indeed, the temperature gradient in the bulk results in a non- 
equilibrium phonon distribution function which can be recalculated to the equilibrium 
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one, but in the frame moving with velocity V with respect to the lattice. The 
electric field [H x V ] / c  appearing after the Lorentz transformation results in the 
current u i j [ H  x V I j / c  in the frame moving together with the phonon flow ( c  
is the speed of light). The conductivity tensor U in this equation is formed just 
by the scattering between degenerate electrons and equilibrium phonons from the 
thermal bath. Returning to the basic frame, the dragged current components can be 
recalculated to give it the form 

= uZIIH x V l / c +  (U=,, - ( e 2 / h ) u )  V H / c  (11) 

which gives the desired relation. The phonon scattering does not change the drift 
current in crossed electric and magnetic fields, so the classical Hall conductivity 
relation is still valid and gives exactly zero for the current dragged along the heat 
flow direction. 

In commenting on this general phenomenological result, we should emphasize 
that it is specific only to the case of ideally pure structures, when both the drag 
and conductivity have the same origin. In the presence of impurities, the elastic 
Landau level broadening leads to the possibility of single-phonon absorption events, 
which motivates the application of a metal-like drag theory to the limit of quantizing 
magnetic fields, as was developed in [lo]. The phenomenological studies of the 
acousto-electric (drag) effect in the dirty regime [18] show that in the latter case the 
drag current qualitatively looks like the derivative of the conductivity with respect to 
density (or filling factor at a constant magnetic field), and its longitudinal component 
is not exactly zero. 

5. Dynamically screened electron-phonon interaction 

In deriving equation (I l ) ,  we made no assumptions on the nature of the electron- 
phonon coupling or the internal electron gas properties which originated, for 
example, from the electron-electron interaction. Therefore, we can apply this 
phenomenological result in extending our consideration to the regime of efficient 
dynamical screening of rhe elecrron-phonon interaction. The latter takes place when 
the local conductivity U== is high enough, especially if the speed of charge spreading 
exceeds the sound velocity, 2?ra,,/xs >> 1 [19,20] (x is the material dielectric 
constant). 

In our estimation we view the dynamical screening of a single-phonon potential 
as electron redistribution caused by thzir multiple scattering with the other phonons 
from the bath. Following the method proposed in (201, we describe such a charge 
redistribution in terms of a local conductivity and, therefore, renormalize the electron- 
phonon coupling Vz by using the dynamical screening factor 

IV,,nlZ - IV","l2/U + (2*u,,/xs)z). 

After this procedure, equation (10) acquires the meaning of a non-linear self- 
consistent equation for the conductivity uez. In solving it, we find 
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and 
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for T < hs/X, and T > lis/X,, respectively. The numerical coefficients in 
equation (13) are Eo = 0.59 and E,,, 

Equations (12)-(13) give some phonon contribution to the local conductivity. 
We do  not claim that these equations can describe the conductivity behaviour even 
in pure high-mobility structures at high temperatures because under quantizing 
fields the conductivity extracted from the conventional transport measurements is 
not a local bulk-averaged property but is formed by the percolation structure and 
inhomogeneity of the sample. In contrast, the drag effect is originally local and 
its derivation via equation (11) is sensible, but care should be taken to ensure 
appropriate recalculation of this local quantity to give the thennopower observed. 
The corresponding drag current behaviour in these two limits immediately results 
from the above phenomenological relation and shows rather a weak temperature 
dependence at the highest temperatures: 

0.62; in GaAs ez /s ,yh  - 30. 

Finally, we can distinguish the following regimes of the drag effect depending 
on the phonon bath temperature (in arranging them we refer to  GaAs, as the most 
frequently used material and assume half-integer filling at magnetic fields in the range 
H - 5T).  At the lowest temperatures, T < T, = (11/560)1/4hsef3/rZ, the drag 
is formed by the polar coupling between electrons and phonons and depends as 
jdmg cc T5VT on the temperature of phonon flow. At T > T* (in GaAs T. y 1K) 
the deformation potential interaction starts dominating, which strongly increases 
temperature dependence: in this limit jdmg o( TYVT.  At T - h s / r X H  the drag 
current takes its maximal value, as shown in figure 2. Then, as temperature increases 
sufficiently to allow the (local) conductivity induced by the phonon scattering to be 
comparable with the sound velocity the phonon interaction with electrons is reduced 
by the dynamical screening. For this limit equation (14) gives jdRg D: T-'l5VT, 
so the drag starts decreasing at this temperature. In all the regimes, the current is 
dragged perpendicularly to the phonon Row and its longitudinal component is exactly 
zero. 

Although the detailed comparison of our theory with the experimental results [5] is 
impeded by the difficulty mentioned one paragraph above, the qualitative behaviour 
observed is similar to our expectations. When discussing the lowest Landau level, 
the measured current was increasing rapidly, with saturation at T - h s / ? r X H .  At 
higher T a noticeable decrease of thermoelectricity was found in the measurement 
on a half-filled Landau level (the conductivity in equation (13) is maximal when 
U = n + f). We can assign this to the dynamical screening effect which should be 
already developed (in GaAs-AIGaAs heterostructures) at T - 1OK.  The values of the 
thermoelectric coefficient which we calculated near the maximum at T - h s / r X H  
have, surprisingly, the same order of magnitude as the observed ones, though we use 
no fitting parameters. (These were obtained by substituting the thermal flow velocity 
V extracted according to the usual rules of [16] from the thermal conductivity value 
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(the latter was measured in the same experiment [SI) into equation (9).) On the other 
hand, the impurity scattering broadens the Landau levels and allows the first-order 
phonon absorption channel. The success of an alternative description of the same 
experimental data to that proposed in [lo] leaves open the question of when each of 
these two theories can be applied. In this connection, we should also mention that 
our treatment cannot explain the difference found between different samples, where 
the drag current in one may be several times that found in another. 

6. 2D gas illumination by a focused heam of ballistic phonons 

Another experimental situation was recently realized [6] in the studies of a 2~ gas in 
GaAs-AIGaAs heterostructures using beams of ballistic phonons emitted from a hot 
spot in the semiconductor bulk and focused (due to the sound velocity anisotropy) 
along one of the chosen crystallographic directions lkam of the lattice. It is natural 
to parametrize the beam by its temperature Tkam, assuming the distribution function 
to have the form 

The beam temperature is usually high enough and we shall, therefore, be concerned 
with the limit of Tkam B hsfi/X,. On substituting this distribution function 
into equation (6) and integrating over phonon wave vector orientations, we get the 
phonon-scattering drag current 

which shows usual Shubnikov-de Haas oscillations. 

F@re 3. Schematic form of the Shubnikwde Figure 4. Characteristic form of Shubnikw-dc 
Haas oscillations of conductivity change 6 0 ~ ~  ac- Haas 06cillalions of the inter-Iandau-level part 
tinted by the phonon beam irradiation. The in- of the drag current activated by a focused beam 
se1 s h o w  inter-landau-level phonon-assisted Iran- of ballistic phonons. &,,, was calculaled from 
sitions accounted for in equation (16). equations (17) for GakoAlGaAs heremstNcture 

with eleclron density 3 x 10" cm-2 and for beam 
inclination 45'. 
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As distinct from the thermoelectric drag effect, the application of focused 
ballistic phonon beams allows US to subject the electron gas to high-energy phonon 
illumination and investigate some kind of resonant cyclotron phonon absorption in 
the system. The probability of such an event is rather low because of the high 
momentum of an absorbed phonon, q,, ,., w c / s  > A;’. The resulting overheating 
of the electron gas is weak, and the latter thus retains degeneracy in spite of a high 
beam temperature. The kinetic equation which describes phonon-assisted electron 
transitions between some Landau levels close to the Fermi energy (they are shown in 
the inset to figure 3) can be written as 

= % + l ( l -  vk ) /d9  Ivk+i,k(9)lZ6(Q-W=/S). (16) 

Here k = n,n - 1. The left-hand side of this equation represents absorption and 
stimulated emission of phonons with q = lbeamwc/s. The right-hand side describes 
spontaneous emission of phonons with arbitrarily oriented wave vectors. In the above 
limit of wJs > A;’ the inter-Landau-level matrix element V k , k t l ( l b e a m ~ c / ~ )  is 
exponentially small for all reasonable angles of beam inclination, and spontaneously 
emitted phonons thus have momenta almost perpendicular to the gas plane. This 
allows us to perform the integration in the right-hand side of equation (16) in a 
general form and then find that 

vktl(l - v k )  = - vk+l~(~k.m/msZ) [ L ~ ( v ) I * w - v  

where q = wfA&(l, x lka,)*/2s2 = ( fw, /2ms2)( l ,  x lbelm)Z. This equation 
immediately shows that the conductivity increase under illumination conditions due 
to the non-equilibrium repopulation of Landau levels is most prominent near the 
integer filling factors, where more non-equilibrium electrons can he accumulated at a 
higher Landau level, 

6uzz 6vn+1 = - U:+, = ~/=L!,(dv 112 e - V I Z ,  

At a partially filled Landau level 6uZz ,. 6vk - ( T b e , m / m s z ) ( ~ ~ ( ~ ) ) z v e - r  is 
much smaller. We expect, therefore, a splash-like shape of the Shubnikovde 
Haas oscillations of phonon-beam-activated conductivity: in a narrow region near 
integer filling, the exponential factor changes from exp(-q/2) to exp(-q), which 
can compete with the fast change of the exponent itself due to variation of a 
magnetic field. Figure 3 schematically shows a qualitative behaviour of this effect. We 
should also mention that the intra-Landau-level scattering by means of low-frequency 
phonons leads to the contribution to 6u,, which has minima at integer filling, and 
is thus distinguishable from the resonance effect. Hence, in extracting the activated 
change of conductivity from the above behaviour, one can register the events of the 
cyclotron absorption of acoustic phonons in the ballistic beam experiments at rather 
low magnetic fields. 

As for the resonant drag current, it appears due to an imbalance between 
absorption and stimulated emission processes and can be calculated as 

idrag - - [l, x lbe.,](2xe/h){wt [ w : ~ ’  + (e f ls ) ’ ]  /2pOs6) 

x [vN+I(1- U N )  + vN(1- YN- l ) l  (17) 
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which gives the value (for tw, > hsep/Z - lmeV in GaAs) 
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This equation shows that the resonant drag current is exponentially small at 
high fields and the exponential magnetic field dependence practicaliy obliterates the 
Shubnikowle Haas oscillations in the extreme quantum limit. We illustrate this in 
figure 4 for some of the lowest Landau levels and in such cases the drag occurs via 
secondader processes; at a lower magnetic field (or at higher filling) the resonant 
drag current suddenly increases and begins to dominate. 

Finally, under the conditions of the quantum Hall effect, Y = n, the non- 
equilibrium stationary state found from equation (16) contains a number of electron- 
hole pairs (at the nth Landau level) with electron oscillator centre shifted with respect 
to its abandoned empty place. This produces some electric diople polarization of 
a system. When the sample has the form of a strip, we expect certain charge 
accumulation at the edges, resulting in an electric field across the sample. The 
latter should give rise to the excess (dissipationless) Hall current in the system. 

7. Conclusions 

In summaly, we have studied the phonon drag of ZD electrons under a quantizing 
magnetic field and have derived some general relations between the drag and 
conductivity in the model of free 2D electrons interacting with bulk phonons. The 
characteristic temperatures of a crossover between different asymptotical regimes 
resulting from the features of coupling of bulk phonons with 2D electrons at Landau 
levels have been also determined. One of them, T., separates regions where either 
the polar or deformation potential mechanism of coupling dominates. The second, 
T - h s f i / r r X H ,  is related to the specific structure of the Landau functions and 
manifests some cut-off of the short-wavelength phonons from the current formation. 
Finally, the thud points to such an increase of local phonon-scattering-induced 
conductivity which provides efficient enough dynamical screening of the electron- 
phonon interaction itself. The latter two effects are the source of the saturation and 
even decrease of the drag current with increasing temperature. 

As far as the case of focused ballistic phonon beams is concerned, we believe 
that here the resonant cyclotron phonon absorption is the most interesting subject for 
discussion. Our results show that the beam-activated conductivity possesses different 
Shubnikov-de Haas oscillation shapes when it originates from phonon scattering or 
resonant absorption events, which makes them distinguishable. On the other hand, 
we clam that in an extreme quantum limit the drag by focused ballistic beams mainly 
results from the intra-Landau-level scattering processes. We also predict an excess 
Hall current in the system excited by partial polarization of electronic gas under the 
phonon beam illumination. 
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